
Pragmatic Continuous Delivery

Day I

Continuous Delivery 101

DevOps

Kanban

Continuous Integration

Continuous Testing

Continuous Delivery

Continuous Deployment

DevOps

Kanban

Continuous Integration

Continuous Testing

Continuous Delivery

Continuous Deployment

DevOps

Kanban

Continuous Integration

Continuous Testing

Continuous Delivery

Continuous Deployment

DevOps

Kanban

Continuous Integration

Continuous Testing

Continuous Delivery

Continuous Deployment

DevOps

Kanban

Continuous Integration

Continuous Testing

Continuous Delivery

Continuous Deployment

What?

A methodology for reducing the cost, time and risk of delivering
incremental changes to users.

Qualities

1. Software is always in shippable state once code is pushed into the
mainline (including infrastructure, configuration, data)

2. Push-button deployment for any desired version

DevOps

Kanban

Continuous Integration

Continuous Testing

Continuous Delivery

Continuous Deployment

Why Continuous Delivery?

High-performing organizations are deploying code 30 times more
frequently, with 50 percent fewer failures than their lower-performing

counterparts.

State of DevOps Report (2014)

https://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf

Amazon

new code is deployed every 11.6 seconds during a normal business day (3K
production deployments per day)

Facebook

each of 5,000 engineers commits to trunk HEAD at least once a day and the
code at trunk HEAD is pushed to production once daily

Etsy

50 deploys/day

Google

15K engineers work from the HEAD revision of a single Perforce trunk. 50%
of the code will be changed in any given month. 8 minutes after you commit

code it's live in production.

This book integrates into a compelling narrative the best current
thinking about how to create great software-intensive products and

services. The approach in this book is both challenging and disciplined,
and some organizations will be unable to imagine following this path.

But those who make the journey will find it impossible to imagine ever
going back—and if they happen to be a competitor, they are well

positioned to steal both your market and your people. Ignore this book
at your own risk.

(c) Mary Poppendieck

Anatomy of Deployment Pipeline

All changes to production go through deployment pipeline

All changes to production go through version control (from mainline!)

Build only once

Test on production-like environment

Deploy the same way to every environment

Commit Stage

Continuous Integration compliance checklist

1. All developers push the code at least once a day (to Mainline)

2. All developers run tests locally before pushing the code (and never push the code if tests fail)

3. Every change results in a build and tests run

4. Developers never push the code if a build is broken (why the build is broken if #3 is true?)

5. Build is always fixed within ten minutes of it going red

I will work in a branch and sync with Mainline every day.

(and push when my feature is ready)

I will use Mainline as a primary tool for identifying regression
in my code

CI changes dynamics of a game

- No painful merges (try aggressive refactoring w/o CI)

- Small increments (easier code review, more opportunities for pairing)

- Evergreen Mainline requires engineering rigor (TDD, preflight quality control)

- Feature branching becomes unnecessary (brings back synchronous code reviews)

- Faster feedback from Sheriff on Duty (SoD)

- Faster feedback from downstream quality gates (if any)

One thing that I really like about open-source is that it really allows different
people to work together. We don't have to like each other. And sometimes we

really don't like each other.

(c) Linus Torvalds

http://www.ted.com/talks/linus_torvalds_the_mind_behind_linux

http://www.ted.com/talks/linus_torvalds_the_mind_behind_linux

Dealing with unfinished functionality

Feature Toggles

Feature Toggles

- Release Toggles

- Business Toggles

Use cases

- Decoupling deployment from release

- Enabling feature for subgroup of users

- A/B testing

- Addition to circuit breaking

if (ff4j.exist("new-feature")) {
 // new-feature exists
}

if (ff4j.check("new-feature")) {
 // new-feature is toggled
}

Anti-pattern: Feature Toggles introduce additional failure mode

Release toggles are a useful technique and lots of teams use them. However they should be
your last choice when you're dealing with putting features into production. Your first choice

should be to break the feature down so you can safely introduce parts of the feature into
the product. The advantages of doing this are the same ones as any strategy based on

small, frequent releases. You reduce the risk of things going wrong and you get valuable
feedback on how users actually use the feature that will improve the enhancements you

make later.

(c) Martin Fowler at Bliki

http://martinfowler.com/bliki/FeatureToggle.html

Breaking changes

Rule: In Continuous Delivery there are no breaking changes

Branch by Abstraction vs. Branch by Source Control

?

Meaningful commits

4W

Who

When

What

Why

How

4W

Who

When

What

Why

How

$ git log --oneline -5 --author cbeams --before "Fri Mar 26 2009"

e5f4b49 Re-adding AutoConfigurationPostProcessor
2db0f12 fixed two build-breaking issues
147709f Tweaks to dependency files
7f96f57 polishing
2d30f32 implemented facebook integration

$ git log --oneline -5 --author pwebb --before "Sat Aug 30 2014"

5ba3db6 Add automatic configuration with reasonable defaults
84564a0 Improve stability of DateTime tests
e142fd1 Set fixed Guava version from 16.0.* to 16.0.1
ac8326d Polish mockito usage according to [best practices]
2d30f32 Implement facebook authentication [FB-5332]

-> How to Write a Git Commit Message

http://chris.beams.io/posts/git-commit/

6 Deadly Sins of A Unit Test

Unstable

OS-specifics

Wildcard dependency
versions

Shared state in tests

System Time

Asynchrony

Concurrency

public class FlawedList<T> extends ArrayList<T> {
 public boolean putIfAbsent(T object) {
 boolean absent = !super.contains(object);
 if (absent) {
 super.add(object);
 }
 return absent;
 }
}

@Test
public void testPutIfAbsent() {
 FlawedList<String> list = new FlawedList<String>();
 list.putIfAbsent("foo");
 list.putIfAbsent("foo");
 assertThat(list.size(), is(1));
}

FlawedList<String> list = new FlawedList<String>();

@Test(threadPoolSize = 5, invocationCount = 20)
public void testList() {
 list.putIfAbsent("foo");
 assertThat(list.size(), is(1));
}

public class WeavedFlawedListTest {
 private FlawedList<String> list;

 @ThreadedBefore public void before() {
 list = new FlawedList<String>();
 }

 @ThreadedMain public void mainThread() {
 list.putIfAbsent("foo");
 }

 @ThreadedSecondary public void secondThread() {
 list.putIfAbsent("foo");
 }

 @ThreadedAfter public void after() {
 assertEquals(1, list.size());
 }
}

public class FlawedList<T> extends ArrayList<T> {
 public boolean putIfAbsent(T object) {
 boolean absent = !super.contains(object);
 if (absent) {
 super.add(object);
 }
 return absent;
 }
}

Unreliable

No tests - bad

Bad tests - even worse

Slow

Implicit waiting

Computation-intensive

Stupid

Code coverage boosters

Fuzzing

Sequential

Shared state

Sociable

Relying on concrete classes

Relying on external systems

Being sociable is OK, if:

Dependency on non-trivial execution context (e.g. Spring)

File system

SMTP client

SQL repository

Redis repository

Being sociable is OK, if:

Dependency on non-trivial execution context (e.g. Spring)

File system

SMTP client

SQL repository

Redis repository

Being sociable is OK, if:

Dependency on non-trivial execution context (e.g. Spring)

File system

SMTP client

SQL repository

Redis repository

Being sociable is OK, if:

Dependency on non-trivial execution context (e.g. Spring)

File system

SMTP client

SQL repository

Redis repository

Being sociable is OK, if:

Dependency on non-trivial execution context (e.g. Spring)

File system

SMTP client

SQL repository

Redis repository

Being sociable is OK, if:

Dependency on non-trivial execution context (e.g. Spring)

File system

SMTP client

SQL repository

Redis repository

class RedisBackedCacheTest {

 @Rule
 public GenericContainer redis = new GenericContainer("redis:3.0.6")
 .withExposedPorts(6379);
 private Cache cache;

 @Before
 public void setUp() {
 Jedis jedis = new Jedis(redis.getIpAddress(), redis.getMappedPort(6379));
 cache = new RedisBackedCache(jedis, "test");
 }

 @Test
 public void findsAnInsertedValueInCache() {
 String key = "foo";
 cache.put(key, "FOO");
 Optional<String> cacheHit = cache.get(key, String.class);
 assertThat(cacheHit, isPresent());
 }

}

class RedisBackedCacheTest {

 @ClassRule
 public static GenericContainer redis = new GenericContainer("redis:3.0.6")
 .withExposedPorts(6379);
 private Cache cache;

 @Before
 public void setUp() {
 Jedis jedis = new Jedis(redis.getIpAddress(), redis.getMappedPort(6379));
 cache = new RedisBackedCache(jedis, "test");
 }

 @Test
 public void findsAnInsertedValueInCache() {
 String key = UUID.randomUUID().toString()
 cache.put(key, "FOO");
 Optional<String> cacheHit = cache.get(key, String.class);
 assertThat(cacheHit, isPresent());
 }

}

class UberSmartHttpClientTest {

 @Rule
 public WireMockRule wireMockRule = new WireMockRule(8089);

 @Test
 public void exampleTest() {
 stubFor(get(urlEqualTo("/my/resource"))
 .withHeader("Accept", equalTo("text/xml"))
 .willReturn(aResponse()
 .withStatus(200)
 .withHeader("Content-Type", "text/xml")
 .withBody("<response>Some content</response>")));

 Result result = uberSmartHttpClient.doSomeHttpRequest();

 assertTrue(result.wasSuccessful());
 }

}

Fault injection

stubFor(get(urlEqualTo("/delayed")).willReturn(
 aResponse()
 .withStatus(200)
 .withFixedDelay(2000)));

docker-compose.yml
version: '2'
services:
 app:
 build: .
 ports:
 - "5000:5000"
 volumes:
 - .:/code
 depends_on:
 - redis
 - mysql
 redis:
 image: redis:2.8
 mysql:
 image: mysql:5.6
 ...

Dockerfiles
FROM nginx
RUN rm -f /etc/nginx/conf.d/*

RUN apt-get update && apt-get install -my \
 supervisor \
 curl \
 wget \
 php5-curl \
 php5-fpm \
 php5-gd \
 php5-memcached \
 php5-mysql \
 php5-mcrypt \
 php5-sqlite \
 php5-xdebug \
 php-apc

RUN sed -i "s/user = www-data/user = root/" /etc/php5/fpm/pool.d/www.conf
RUN sed -i "s/group = www-data/group = root/" /etc/php5/fpm/pool.d/www.conf
RUN sed -i '/^;clear_env = no/s/^;//' /etc/php5/fpm/pool.d/www.conf
RUN sed -i '/^;ping\.path/s/^;//' /etc/php5/fpm/pool.d/www.conf
RUN sed -i '/^;pm\.status_path/s/^;//' /etc/php5/fpm/pool.d/www.conf

YUM repository

- Nexus

- Artifactory

- yum-s3-plugin

- yum-s3-iam

RPM packager

- fpm

- gradle-ospackage-plugin

https://github.com/jbraeuer/yum-s3-plugin
https://github.com/seporaitis/yum-s3-iam
https://github.com/jordansissel/fpm
https://github.com/nebula-plugins/gradle-ospackage-plugin

supervisor.conf

[program:app]
command=java -port=3000 -logdir=/var/log/app/ -jar /opt/app/current/app.jar
user=deployer
autostart=true
autorestart=true
startsecs=10
startretries=3
stdout_logfile=/var/log/app/stdout.log
stderr_logfile=/var/log/app/stderr.log

deploy-playbook.yml

- hosts: all
 serial: 1
 tasks:
 - name: install the app
 yum: name=app-{{version}} state=present
 notify:
 - restart supervisord
 handlers:
 - name: restart supervisord
 service: name=supervisord state=restarted

 - name: start the app
 supervisorctl: name=app state=started

 - name: health check
 health_check:
 url: "{{inventory_hostname}}/health"
 delay_between_tries: 5
 max_retries: 20
 expected_regexp: "alive"
 pre_tasks:
 - name: disable nagios alerts for this host webserver service
 nagios: action=disable_alerts host={{ inventory_hostname }} services=webserver

 - name: disable the server in haproxy
 haproxy: state=disabled host={{ inventory_hostname }}

 - name: stop the app
 supervisorctl: name=app state=stopped

$ ansible-playbook deploy-playbook.yml -i /hosts/acceptance --extra-
vars "version=1.1.2"

$ ansible-playbook deploy-playbook.yml -i /hosts/exploratory --extra-
vars "version=1.1.2"

$ ansible-playbook deploy-playbook.yml -i /hosts/production --extra-
vars "version=1.1.2"

- bot: building 1.1.2 from commit [add healtchecks] by @eduardsi

- bot: 1.2.2 passed commit stage

- bot: 1.2.2 passed acceptance tests

- bot: 1.1.2 ready to be promoted to exploratory testing

- $ promote 1.1.2

- bot: 1.1.2 is available at http://exploratory.app.io/1.1.2

- $ promote 1.1.2 --single 50% 100%

https://github.com/eduardsi/cucumber-3g/commit/fb60f27628b3eddbc81f94faf3a56ffa77692868
http://sizovs.net/slides/pragmatic_cd/
http://sizovs.net/slides/pragmatic_cd/
http://sizovs.net/slides/pragmatic_cd/
http://exploratory.app.io/1.1.2

- $ features list

- bot: /facebook-registration (disabled)

 /twitter-registration (enabled, 100%)

- $ features enable facebook-registration 10%

- $ features list

- bot: /facebook-registration (enabled 10%)

 /twitter-registration (enabled, 100%)

supervisor.conf

[program:app]
command=java -port=3000 -log.dir=/var/log/app/ -jar /opt/app/current/app.jar
user=deployer
autostart=true
autorestart=true
startsecs=10
startretries=3
stdout_logfile=/var/log/app/stdout.log
stderr_logfile=/var/log/app/stderr.log

Arg4j

 @Option(name="-port", usage="HTTP port the application will run on")
 public Integer port;
 ...
 @Option(name="-log.dir", usage="A directory where logs will be written to")
 public File logDir;
 ...

$ java -jar app.jar -wrong

"-wrong" is not a valid option
Application [options]
 -port VAL : HTTP port the application will run on
 -logDir FILE : A directory where logs will be written to

deploy-playbook.yml

- hosts: all
 serial: 1
 tasks:
 - name: install the app
 yum: name=app-{{version}} state=present
 notify:
 - restart supervisord
 handlers:
 - name: restart supervisord
 service: name=supervisord state=restarted

 - name: start the app
 supervisorctl: name=app state=started

 - name: health check
 health_check:
 url: "{{inventory_hostname}}/health"
 delay_between_tries: 5
 max_retries: 20
 expected_regexp: "alive"
 pre_tasks:
 - name: disable nagios alerts for this host webserver service
 nagios: action=disable_alerts host={{ inventory_hostname }} services=webserver

 - name: disable the server in haproxy
 haproxy: state=disabled host={{ inventory_hostname }}

 - name: stop the app
 supervisorctl: name=app state=stopped

/health

/version

/info

/metrics

/env

/configprops

/trace

/mappings

/logfile

/dump

/shutdown

{
 "counter.status.200.root": 20,
 "counter.status.200.metrics": 3,
 "counter.status.200.star-star": 5,
 "counter.status.401.root": 4,
 "gauge.response.star-star": 6,
 "gauge.response.root": 2,
 "gauge.response.metrics": 3,
 "classes": 5808,
 "classes.loaded": 5808,
 "classes.unloaded": 0,
 "heap": 3728384,
 "heap.committed": 986624,
 "heap.init": 262144,
 "heap.used": 52765,
 "mem": 986624,
 "mem.free": 933858,
 "processors": 8,
 "threads": 15,
 "threads.daemon": 11,
 "threads.peak": 15,

- bot: building 1.1.2 from commit [add healtchecks] by @eduardsi

- bot: 1.2.2 passed commit stage

- bot: 1.2.2 passed acceptance tests

- bot: 1.1.2 ready to be promoted to exploratory testing

- $ promote 1.1.2

- bot: 1.1.2 is available at http://exploratory.app.io/1.1.2

- $ promote 1.1.2 --single 50% 100%

https://github.com/eduardsi/cucumber-3g/commit/fb60f27628b3eddbc81f94faf3a56ffa77692868
http://sizovs.net/slides/pragmatic_cd/
http://sizovs.net/slides/pragmatic_cd/
http://sizovs.net/slides/pragmatic_cd/
http://exploratory.app.io/1.1.2

curl -X POST -H "Content-Type: application/json" -d '{"event":"data"}' \

localhost:9880/app.request

Sensitive data?

The current repository was configured using transcrypt version 0.9.6
and has the following configuration:

 CIPHER: aes-256-cbc
 PASSWORD: MEu5xyQ&G@/}:D___1231aala4

Copy and paste the following command to initialize a cloned repository:

 transcrypt -c aes-256-cbc -p 'MEu5xyQ&G@/}:D___1231aala4'

What do you do when a developer leaves the team or the
repository is compromised?

Our recommended approach to use Vault with any configuration manage tool
is to move the secret retrieval and renewal into a runtime process instead of

a build time process.

- excerpt from Vault documentation

https://www.hashicorp.com/blog/using-hashicorp-vault-with-chef.html

Dynamic infrastructure

Reliable deployments require Reliable Deployment System

All changes to Jenkins go through version control and Jenkins
can be rebuilt in automated fashion

Golden Image

Job DSL Plugin

def project = 'quidryan/aws-sdk-test'
def branchApi = new URL("https://api.github.com/repos/${project}/branches"
def branches = new groovy.json.JsonSlurper().parse(branchApi.newReader())
branches.each {
 def branchName = it.name
 def jobName = "${project}-${branchName}".replaceAll('/','-')
 job(jobName) {
 scm {
 git("git://github.com/${project}.git", branchName)
 }
 steps {
 maven("test -Dproject.name=${project}/${branchName}")
 }
 }
}

TTD and TTR metrics are defined by SLA of the most critical
system

Metadata survives the crash (build number, logs, history)

Slaves survive the crash

All changes to Jenkins are pre-flight tested

Each team has their own Jenkins and owns underlying
infrastructure

Hardware is never a bottleneck

Jenkins is either auto-scalable or easy to scale

Consider Jenkins EC2 plugin

https://wiki.jenkins-ci.org/display/JENKINS/Amazon+EC2+Plugin

Jenkins is at the close proximity with dependencies (which are
redundant)

Web Testing

phantomjs

xvfb

ievms

browsersync

saucelabs / browserstack / aws device farm

mitmproxy / mitmdump / tamper

Stress Testing

gatling / loader.io / flood.io

simian army

Fault Tolerance

risk storming

timeouts

circuit breakers / graceful degradation

bulkheads

handshaking / rate limiting

cloudflare

auto-scaling

continuous security

https://github.com/xdissent/ievms

Consider

zero-time data migrations (flyway, LHM, pt-online-schema-change, testing migrations on replica)

immutable infrastructure (vagrant / vmware / ansible / serverspec / packer)

terraform

serverless

consumer-driven contracts (accurest in particular)

https://github.com/soundcloud/lhm
https://www.percona.com/doc/percona-toolkit/2.1/pt-online-schema-change.html
https://github.com/Codearte/accurest

Implementing Continuous Delivery

find a bottleneck, set a goal

find the best simplest possible solution and get sh%t
done

repeat.

More

regular devops get-togethers

commitment language

80/20

reduce batching

build quality in

Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

Shia LaBeouf "Just Do It" Motivational Speech (Original Video)

https://www.youtube.com/watch?v=ZXsQAXx_ao0

Thank you!

Continuous Security

Validating Git for things that look suspicious:

- Gitrob (https://github.com/michenriksen/gitrob)

- Talisman (https://github.com/thoughtworks/talisman)

https://github.com/michenriksen/gitrob
https://github.com/thoughtworks/talisman

Scenario: Verify server is open on expected set of port
 When I launch an "nmap" attack with:
 """
 nmap -F <hostname>
 """
 Then the output should match:
 """
 80/tcp\s+open
 """

Scenario: Verify that there are no unexpected ports open
 When I launch an "nmap" attack with:
 """
 nmap -F <hostname>
 """
 Then the output should not contain:
 """
 22/tcp
 25/tcp
 """

Scenario: Ensure no anonymous certificates
 When I launch an "sslyze" attack with:
 """
 python <sslyze_path> <hostname>:443
 """
 Then the output should not contain:
 """
 Anon

WebAppSec/Secure Coding Guidelines

https://wiki.mozilla.org/WebAppSec/Secure_Coding_Guidelines

OWASP Application Security Verification Standard Project

https://www.owasp.org/images/6/67/OWASPApplicationSecurityVerificationStandard3.0.pdf

The OWASP Zed Attack Proxy (ZAP) is one of the world’s most popular free
security tools and is actively maintained by hundreds of international

volunteers*. It can help you automatically find security vulnerabilities in
your web applications while you are developing and testing your

applications. Its also a great tool for experienced pentesters to use for
manual security testing.

Evil user stories

As {some kind of bad guy} I want to {do some bad thing}…

